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picture 
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Received 30 November 1981 

Abstract. The static and dynamic force-force correlation function for the one-dimensional 
Toda lattice is calculated in the soliton-gas approximation. The dispersion and width of 
the soliton and phonon resonances are discussed in detail. Comparison with other calcula- 
tions and molecular dynamics results shows that this approximation gives a reasonable 
description of most of the features in the correlations. 

1. Introduction 

Since the pioneering work by Toda (1967, 1975) on the linear chain with exponential 
nearest-neighbour interaction, this lattice has served as an example of a system with 
anharmonic interactions, where exact results could be compared with various approxi- 
mation schemes. Furthermore, the integrability of the system makes it interesting for 
thermodynamical investigations. 

In this study certain static and dynamic correlation functions are investigated, using 
the so-called soliton-gas approximation, where all relevant quantities have, for low 
temperatures, two independent contributions: one from an ideal gas of solitons on 
the lattice and the other from quasiharmonic phonons. This approximation has been 
introduced phenomenologically (Biittner and Mertens 1979, Schneider and Stolll980, 
1981, Bolterauer and Opper 1981), but certain inaccuracies occurred concerning the 
momentum or the number of the solitons. Recently a microscopic foundation for the 
soliton-gas picture has been given (Mertens and Biittner 1981) by using appropriate 
action-angle variables. Hereby the exact result for the free energy is reproduced and 
the correct canonical momentum is revealed. 

In § 2 the relevant static results for the Toda lattice are reviewed and some new 
interpretations are given. In § 3 the dynamical correlation function is calculated in 
the soliton-gas approximation. In 4 4  the results are compared with a molecular 
dynamics simulation (Schneider and Stoll 1980, 1981) and with the results of an 
approximate analytical method (Diederich 1981a,b); we find that the soliton-gas 
picture gives a reasonable physical explanation of most of the features in the dynamical 
correlations. 

2. Static properties 

Some of the basic results for the Toda lattice are reviewed first. The Hamiltonian for 
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this system with N particles is written as 
N 

i= l  
H = + v(qj+1-4j)l 

where 
V(rj) = exp(-ri) + rj - 1 

is the intersite Toda potential. (The Hamiltonian is written in an appropriate scaling, 
where the length, time and energy units are defined in characteristic parameters of 
the potential (Toda 1975).) The classical partition function Z at zero pressure is 
known exactly for this lattice and can be written as 

(3) 

with the inverse temperature p = 1 /T  and the gamma function r(p). For later 
comparison the low-temperature expansion is also given: 

(I/N) In z = -3111 p +p(1 -In p ) + l n [ r ( p ) / ( 2 ~ ) ’ / ~ ]  

( l / N ) l n Z = l n  T+&T+ . . . .  (4) 

In order to study the static correlations in this lattice it is quite convenient to use the 
force-force correlation functions. With the definition 

( 5 )  e, = -8 V/ar, = exp(-r,) - 1 

one calculates the canonical average 

(e,) = 2-’ I dp, d4, e, exp(-pH) = dr e, (r) V(r ) / l  dr V(r) ( 6 )  
i I 

and obtains 

(e:> - (e,)’ = ((av/ar)*) = ((r - V) 8 v/ar> = (r a v/ar>, 

(e:) -(e,)* = T. 
(7) 

In the last two equations the special properties of the potential V(r) and the virial 
theorem have been used. From this result, which is the same for the harmonic lattice 
if we calculate the corresponding averages of the force, one can determine the static 
correlation function 

Because all the off-diagonal elements vanish, we arrive at the exact result 

S e e ( q )  = T (9) 
which is independent of 4. This is by no means a very astonishing result, because the 
force is related to the virial and therefore the correlation function only depends on 
thermodynamic variables. Again the same holds for the harmonic lattice (Buttner 
1981). 

Another nice feature of the Toda lattice is the fact that for this integrable system 
one explicitly knows the canonical transformation to action-angle variables (Flaschka 
1974, McLaughlin 1975, Eilenberger 1981). The Hamiltonian can be written as the 
sum of phonon and soliton contributions: 
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where the first part depends on the continuous action-variable J for the harmonic 
phonons, and the second part describes the energy of the various v-soliton solutions. 
The partition function can correspondingly be written as a product of two contributions 

z=zp*zs. (11) 

Z p = T N  (12) 

The harmonic part is (Mertens and Buttner 1981) 

and gives the first term in the low-temperature expansion (4). The soliton part is 
evaluated here in the soliton-gas approximation (Mertens and Biittner 1981). This 
is easiest after a canonical transformation to position Q, and momentum P, variables 
of a single soliton: 

(Since all the variables J, or P,, respectively, must be distinct (Flaschka 1974), multiple 
occupancy has to be avoided in (13) and leads to the Fermi factor in (14), instead of 
the Boltzmann factor.) 

A similar calculation has been done by Schneider and Stoll (1980, 1981), who 
started with the same ansatz, but did not use the correct canonical momentum for 
the soliton and therefore could not reproduce the low-temperature expansion of the 
exact result (for discussion see Bolterauer and Opper 1981, Mertens and Biittner 
1981). 

For an explicit calculation of 2, one has to substitute P by the parameter a in the 
one-soliton solution 

e,, = sinh' (Y sech'(an + f sinh a ) .  (15) 

Here a is the only parameter and determines all physical properties of the soliton, 
like momentum, velocity and energy, 

P = 4(a cosh a - sinh a ) ,  

ZJ = (sinh a ) / a ,  

E = sinh(2a) - 2a. 

The velocity U has been scaled by the lattice parameter a, which is a second length 
scale, independent of the length unit defined by the anharmonicity parameter of the 
Toda potential. 

The momentum should not be confused with that of the soliton-bearing chain, 

P, = 1 p,, = 2 sinh a, (19) 
n 

which is not the canonical variable conjugate to the centre of mass of the soliton. 

by steepest descent and we find 
The soliton part of the partition function is then calculated for low temperatures 

( l /N) lnZs= i$T+ .  . . (20) 
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which is identical to the leading anharmonic term in the expansion of the exact partition 
function (4). In the same way the density of solitons is calculated 

n (a )  = (2/7rZ)a sinh a[exp(PE) + 11-l (21) 

and is shown in figure 1. For T=0.25  one may compare this with the results of a 
molecular dynamical calculation by Schneider and Stoll (1980, 1981), who identified 
a large number of single solitons with a in the neighbourhood of 0.7. 

The total number of solitons is 

N, = N(ln 2/7r2)T (22) 

for low temperatures. 

a 

Figure 1. Soliton-number density for two different temperatures. 

3. Dynamical properties 

The time-dependent force-force correlation is defined by 

where e,(t) is the general solution of the equation of motion -cj, = e, - e,-1 for the 
Toda lattice. Since the general solution is not known, only the N,-soliton solutions 
e”,(t) are considered and thus only the soliton part S:, of Se, is calculated. The mean 
values (e;) and (e;(r)e;(O)) are defined in this approximation by using the grand 
canonical ensemble in (13). In the framework of the ideal-gas approximation the 
N,-soliton solution can be represented by a sum of N, single-soliton solutions 

After a short calculation one finds 
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where the Fermi factor has been abbreviated by 

fa = ln(1 +exp[-PE(a)]}. (26) 

In contrast to the vanishing (e,) in § 2, (e:) is positive since the solitons are compres- 
sional pulses. 

In a similar calculation for the correlation one has 

52 

dQsech2a(m -Q+uf)sech2a(n  -Q). (27) 

Though the Q integral could be done at once, it is more convenient first to insert 
equation (27) into Se,, to replace the Fourier sum by an integral, to substitute 
m - Q + ut = y ,  and then to perform the y and Q integrations: 

At first the static properties are discussed by setting t = 0. For fixed q > 0 the 
asymptotic behaviour for T + 0 is given by 

S”,(q) =S:,(q, t=O)-eexp(-~q~’~T-’’~)  (29) 
where the unusual exponent is due to the non-analytic behaviour of the integrand for 
a + 0. This asymptotic region, however, is quite narrow, e.g. for q = O.l. lr ,  T has to 
be smaller than 0.005. In figure 2 the numerical results for the ratio S:,(q)/S,,(q) 
are shown for two larger temperatures (T  = 0.025,0.25). 

5 
9/77 

Figure 2. Soliton contribution S:,(q) relative to the static correlation function S,,(q). 

It is obvious that the soliton contribution to S: , (q )  is very small for low tem- 
peratures. This is in contrast to Schneider and Stoll (19811, who get S:,(q) - T for 
T + 0 independent of q, which would mean S:, -Se, because of (9). But already for 
the harmonic crystal the force-force correlation is equal to T, and therefore the 
solitons can produce only small anharmonic effects in the static properties for low 
temperatures. 
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The dynamical correlations are described by the Fourier transform of (28) 

32 sinh’ a. (q7r /2a0)~ 
q7r aou ’ (ao)  sinh2(q.rr/2ao) (30) S:e  (49 0 ) = - fa, ~ 

u(ao) = a;’ sinh a. = w/q .  

where a. 3 0 is the solution of 

(31) 
This correlation S:,,(q, w )  vanishes as a function of w for w S q ,  increases sharply to 
a maximum above w = q, and has an exponential decay for larger w.  In figure 5 on 
the right the ratio 

& e ( q ,  w ) = s : e ( q ,  w ) / s ; e ( q )  (32) 
is shown. It is normalised to an area of 27r. 

dispersion is nearly linear and can be very well approximated by 
The peak position w&) is shown in figure 3 as a function of q. This soliton 

ws = q sinh(a,)/a, (33) 
where am is the maximum of the soliton density n ( a )  in figure 1. 

The half-wdith r&) of S:, is also linear (see the full line in figure 4). 
So far only the soliton part S:e has been considered. Since the soliton-phonon 

scattering has been neglected and the phonon part of (10) is harmonic, it is sufficient 
to treat the phonon contribution SE, in a quasiharmonic approximation, where the 
anharmonicities enter only via the temperature-dependent force constant. Using the 
isothermal sound velocity (Leibfried 1955, Schneider and Stoll 1981) we obtain for 

c 
T : 0 2 5  Ol0I 

q1n 

Figure 3. Dispersion of the resonance in S:,(q, U )  

(full line us); of the quasiharmonic phonons (full 
line w J ;  of the harmonic phonons (broken line); in 
S,,(q, U )  from Diederich (1981b) (full circles); in 
S,,(q, w )  from molecular dynamics (crosses) 
(Schneider and Stoll 1981). 

qln 

Figure 4. Half-width of the resonance in S:,(q, w )  
(full line); in the high-frequency part of Diederich’s 
(1981b) S,,(q, w )  (crosses); in the molecular 
dynamics results of Schneider and Stoll (1981) for 
S,,(q, w )  (circles; the error bars result from our 
estimating the widths by means of the published 
drawings). 
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the dispersion of the peak position (figure 3) 

(34) 

In a one-dimensional system there is a width of certain dynamical form factors 
due to multi-phonon processes even in the harmonic approximation. Mikeska (1973) 
has shown that the density-density correlation function approximately has a Lorentzian 
shape with a width 

(35) 

1 w ;  = ( l - z T + .  . .)2(1-cosq). 

r , = a T q  2 . 

As a very rough estimate we have taken this width for S:e in figure 5 .  

Figure 5. Dynamic correlation function: soliton part S:,(q, U )  on the right and phonon 
part Sze(q, w )  on the left; the broken line is Diederich’s (1981b) total &(q, w ) ,  

4. Discussion 

We now want to compare our results with those of related calculations in the literature. 
Diederich (1981a, b) applies a new approximation scheme to the dynamical equations 
for the response functions in 4 space, which are solved numerically. The resulting 
displacement-displacement correlation function S,, is connected to the force-force 
correlation See by the exact relation (Schneider and Stoll 1981) 

w 4 s x x ( 4 ,  ~ ) = s e e ( 4 ,  w ) ~ ( ~ - c o s  4 ) .  (36) 
For not too low temperatures (e.g. T = 0.25) S,,(q, w )  shows the following structure. 
For small 4 there is a single resonance. At somewhat larger q values (4 = 0 . 1 ~ )  a 
second peak appears on the low-frequency side and becomes more pronounced with 
increasing 4. At still higher q (4  = 0 . 4 ~ )  the high-frequency peak vanishes and only 
one peak remains. The dispersion of the high-frequency peak is linear (see the circles 
in figure 3) and follows our soliton dispersion with a deviation of only 4%. The 
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half-wdith of the normalised peak also grows linearly with q (see the crosses in figure 
4) and is about 15% smaller than our soliton width r&). We therefore conclude 
that the high-frequency peak in Se, is a soliton resonance. (The 15% difference in 
the width may result from uncertainties in See which are indicated e.g. by an over- 
shooting to negative values, see figure 5 . )  The dispersion of the low-frequency peak 
is nearly the same as the quasiharmonic dispersion wp (figure 3). For not too large q 
values the half-width is also very well approximated by the harmonic value (35). 
Moreover, the peak structure is clearly Lorentzian (see figure 5). We therefore 
interpret the low-frequency peak as the contribution from quasiharmonic phonons. 

We now discuss the soliton and phonon contribution relative to the total correlation 
function See. Our results for S:,(q) in figure 2 show a decrease with increasing q (this 
static form factor is the area under S:,(q, U ) ) .  We therefore expect a disappearance 
of the soliton peak with higher q values. It is also expected that the soliton contribution 
becomes less pronounced for lower temperatures, since there is a drastic decrease in 
the static form factor with decreasing temperatures (see figure 2). These effects are 
seen quite clearly in the results of Diederich (1981b). However, there is a quantitative 
disagreement: the numerical results show a much larger soliton contribution (e.g. at 
least 50% for small q at T = 0.25) than expected from our S",(q), which yields 12% 
at most for small values. A possible explanation for this discrepancy might be an 
enhancement of the soliton form factor by the soliton-phonon interaction (an example 
for such a coupling is the libron form factor for solid orthohydrogen (Bickermann et 
a1 1974)). However, the results of a molecular dynamics calculation of Schneider and 
Stoll (1980, 1981) indicate that the soliton contribution may be rather small. In this 
calculation there is only one unresolved resonance structure in See. The dispersion 
curve is for small q slightly above the harmonic value U :  = 2(1 -cos q) .  With increasing 
q it follows this dispersion and finally approaches the quasiharmonic value up (crosses 
in figure 3). Since the harmonic dispersion wh is situated between up and us, the 
resonance in Se, may represent a superposition of a phonon and a soliton contribution, 
where the latter decreases with increasing q, as seen in figure 2. This interpretation 
is also supported by the behaviour of the half-wdith, which is linear for small q and 
nearly two times that of r, (see figure 4). 

We summarise that Diederich's (1981b) results as well as the results of the molecular 
dynamics simulation of Schneider and Stoll (1980, 1981) can be qualitatively under- 
stood in our simple soliton-gas picture. For quantitative details it might be necessary 
to include effects of phonon-soliton scattering. 
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Nore added in proof. Yoshida and Sakuma (1982) included some effects of the soliton-phonon scattering 
in their calculation of the free energy, but they could not reproduce the exact result. 
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